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Dynamics of relaxing systems subjected to nonlinear interactions
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The combination of the Fermi map system and half a stadium is studied to determine the effect of additional
nonlinearity in the well known Fermi acceleration problem. The relaxation in the Fermi-stadium map with
different R’s is compared to that in the Fermi map. The relaxation is found retarded for different values of
R. After a crossover time, the Fermi relaxation can be approximated by an exponential function, while the
Fermi-stadium relaxation can be approximated by a stretched-exponential function. The fractional egponent
decreases further from unity with increasing nonlinearity. The result bears strong similarity to the basic
features suggested by the coupling model and seen experimentally in glass-forming materials by neutron
scattering.

PACS numbgs): 05.45+hb, 82.20.Rp, 31.70.Hq, 05.46}

INTRODUCTION materials[5—7] and seen experimentally by neutron scatter-

. . ing [8] for relaxation in densely packed interacting mol-
Recent result¢1] have shown that studies of nonlinear ecules in glass-forming liquids. The possibility that the re-

dynamical systems can enhance the understanding of SOM@s of the coupling model originate from nonlinear
fundamental problems in physics, such as stability of thgamiitonian dynamics has existed ever since the first pro-
solar system, phase transitions, turbulence, and the ergo%sm [5] that makes connection to quantum chaoldgy.
problems in statistical mechanics. One common characterig-ater relations to nonlinear classical mechanics were made
tic of such systems is the irreversibility of the dynamics due[4,6'7]. Recently, Tsironis and Aubrj10] have studied re-

to sensitive dependence of initial conditions. Simplified|axation properties of one-dimensional nonlinear lattices and
models for systems such as the Fermi accelerd@dmave  found also nonexponential lattice energy relaxation.
indicated that such systems relax to equilibrium through evo- The interacting arrays modg#] provides a useful step in
lutions as a Markov process. The evolution can be deterapplying nonlinear dynamical models to study the irrevers-
mined from a Fokker-Planck equation. It would be of interestible processes of real physical systems. However, a nonlin-
to study the relaxation of a more complex system, consistingarly coupled many body system would be very complicated
of a number of such systems coupled together by nonlineae study. Introducing more nonlinearities to the simpler sys-
interactions. Such a study may be beneficial to the undertem would serve the purpose of providing insights into what
standing of relaxation processes in glass-forming viscous ligwould happen in the complex problem. It is therefore a well-
uidS, po'ymers1 and ionic ConductorS, to name a few. Theseosed problem to Study the effect of additional nonlineal’ity

problems in condensed matter physics, physical chemical? Well known problems such as the Fermi acceleration.
and materials science involve irreversible processes iNVhat we can learn from the solution of the problem should
densely packed interacting systef@®. The interactions in Shed some light on the nonlinearly coupled many body prob-
these systems come from nonlinear potentials such as that .
Lennard-Jones in liquids and polymers and that of Coulomb
in vitreous fast ionic conductors. EERMI MAP

Recently we analyzed a system of interacting arrays of ) ] o
globally coupled oscillatorf4]. The relaxation in the system A two-dimensional map can be used to model a realistic
of interacting arrays was compared to that in an array noProblem such as the cosmic ray acceleration mechanism pro-
subject to interaction with others. The relaxation of the lattePosed by Fermi2], in which charged particles are acceler-
was found to be exponential in time, while that of the formeratéd by collisions with moving magnetic field structures. In
was slowed down and its time dependence departed frofi€ model, shown in Fig. 1, a ball bounces back and forth
being exponential. There exists a crossover timdefore —between a fixeddissipative wall and an(elastig wall oscil-
which the relaxation of the interacting arrays remains expolating sinusoidally withx=a cosot. The motion of the ball
nential. However, beyontl, the relaxation is no longer ex- Can be described by the Fermi midd—13. The map can be
ponential but well approximated by a stretched exponential'"tten as
exd —(/7)?]. The fractional exponeng was found to de-

crease further from unit with increasing interaction strength. Upy1=(1= 8)u,+sing,|,
The result bears strong similarity to the basic features sug-
gested by the coupling model of relaxation in glass-forming eni1=@nt+27M/upy, 4,
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FIG. 1. One-dimensional dissipative Fermi map. +> @

whereu, is the normalized ball velocity and,, is the phase
of the oscillating wall just before theth collision of the ball
with the oscillating wall, andM =L/16a is the normalized (1-y)
distance between the two walls. Tsang and Lieberma

[12,13, considering the case whek>1 and§<1, calcu-

lated that almost all initial distributions in velocitidg(u) R
evolve to the invariant ond(u)~exp(—24u%). Numerical
computations for various values bf were reported to be in
agreement with such calculations. Assuming that the phast
averaged distribution evolves with tim@eration number

n as a Markov process in alone, the evolution can be 0
written in the form of a Fokker-Planck equation, | o
of d 1 4 I , , N
—=——Bf+ = ——Df, . 2. (8) Two-dimensional Fermi-stadium mafl)) a curved
an au 2 du corner of the added stadium portion.
where the friction coefficient is stadium problem§16—2Q are classical problems known to
many in nonlinear dynamics, and we call this map for the
1 2m . . . L
B(u)= _f Au de=—éu, system the Fermi-stadium map. The dynamics of the map is
2m)o no different from the Fermi map except when the ball col-

lides with the curved corners. The resulting orbits are de-

and the diffusion coefficient is flected by twice the angle between the tangent there and the
1 (2n 1 dissipative wall. Before considering the effect of the deflec-
D(u)= 2_f (Au)2de= §+ S2U2. tion at the curved corners, the map can be written as
mJo

u’'=(1-8)u,+sing,,
Consider an ensemble of particles with an initial velocity

distribution almost being a delta functiof(u). As time o' =p,t+27M/U’,
evolves, the narrow Gaussian distribution widens, approach-
ing the invariant Gaussian distribution. The average energy v =v,

relaxes to the equilibrium energxponentiallyin time.
y'=y+wvL/u (mod9
FERMI-STADIUM MAP

To study one more dimension to the Fermi map, we addrhe modulo 4 restricty between—2 and 2, in light of the
two more elastic walls to the existing ones. As shown in Figfact that one collision at the ceiling and another at the floor
2, the width between the new walls is 2, which is muchgre equivalent to a translation of 4 in the coordinat&or an
smaller thanl. Although the motion of the ball is now two extra collision, the value of would be larger than 1 or
dimensional, the Fermi system with the two walls added issmajler than—1. To adjusty again so that it is between 1
just as simple as the one-dimensional Fermi mgipce v and 1, we do the following:
remains constant foreveunless we add more nonlinearity to

the system by, say, introducing some curvature at the two if y'>1 then y"=2-y,
ends of the fixed dissipative wall. In particular, the right-
angled corners are replaced by quadrants of a circle with if y<—-1 then y'=-2-y.

radiusR [see Fig. 20)], which is much smaller than 1. The
composite system is actually the combination of the FermWe then add the effect due to collisions at the curved cor-
map system and half a stadium. Both the Fermi map and theers. If
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where #=sin"[(Jy’|-1+R)/R]. The new values at then(

+1)st collision with the oscillating wall are then

Ups1=|U"],
Va1 =",
Yor1=1y"l.
Pni1=¢".

RELAXATION OF AVERAGE ENERGY

10 000 initial conditions. The initial distributiorig(u) is

Fermi-stadium map with differerR’s to that in the Fermi

map.

NUMERICAL RESULTS

log(-log @(t))

relaxation of the interacting array4].
To study the nature of the
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FIG. 4. logg(—log;o®) against logst. The curves become
FIG. 3. Numerical result of the Fermi-stadium map with param-nearly straight after a crossover tirhe which depends oR, and
can be fitted to straight lines of slop@gs=1.0, 0.86, 0.8, and 0.78,
respectively, folR=0, 0.02, 0.1, and 0.8rom left to righ.

the mean energy and the equilibrium energy is plotted against time
down increases witlR. Note that forR=0 (the dashed line

at the botton, the map is reduced to the Fermi map and
there is no slowing down of the relaxation. &t 140, the
calculated solid curve, corresponding Re=0.02, begins to
significantly deviate from the Fermi curve. The next curve
above corresponds ®=0.1, and it begins to deviate signifi-
cantly from the Fermi curve starting & 120. ForR=0.5,
since the change from the Fermi map is substantial, we re-
scale the curve horizontally so that it coincides for a signifi-
cant portion with the Fermi curve. The rescaling is shown by
the arrow in Fig. 3. At =85, the curve corresponding B
=0.5 begins to deviate significantly from the Fermi curve.
Thus, there exists a crossover tine (the magnitude of
which depends oR), before which the Fermi-stadium curve
decays exponentially like the Fermi curve, but thereafter it
deviates from the Fermi curve. The existence of such a cross-
over time from simple to coupled dynamics is the character-
istic of the coupling mod€gl5-7] and was found also in the

relaxation, we plot

logio(—log;®P) against logqt in Fig. 4. After a crossover
time t. (which depends orR), the curves become nearly
straight. The portion of the curves can be fitted to straight

To study the relaxation of the average energy in thdines of slopes3=1.0, 0.86, 0.8, and 0.78, respectively, for
Fermi-stadium map, we observed the time evolution ofR=0, 0.02, 0.1, and 0.5. Figure 5 shows that the portion of
curves corresponding to large can be approximated by
such thatuy<1 and vy<u,. In order to smooth the high- simple functions. In particular, the Fermi curolid curve
frequency fluctuations in time, we use a running averagdelow) is shown approximated by th@lotted exponential
over 50 time steps. We then compare the relaxation in théunction. The Fermi-stadium curve, on the other hand, is
shown approximated by ddotted stretched-exponential
function. The dashed curve is an exponential indicating a
failure to fit the Fermi-stadium curve.

Figure 3 shows the numerical result of the Fermi-stadium

map with parameter$=0.01, L and M =100, for various

DISCUSSION AND CONCLUSION

The effect of additional nonlinearity, in the form of half a

values ofR (0, 0.02, 0.1, and 0)5The normalized difference stadium, to the Fermi map, has been studied. Fei0, the
& between the mean energy and the equilibrium energy iproblem reduces to the Fermi map, which relaxes exponen-
tially [1,11,17, i.e., for larget, ®~exp(—t/7). For nonzero
slowed down wherR is nonzero and the degree of slowing R’s, it is found that®~exd —(/7)?] for t>t.. Thus the

plotted against time. The relaxation of® is shown to be
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L LA T T T T chemistry, and materials science, it is found that a system
without interactions usually relaxes exponentially. However,
when such systems are densely packed and interacting with
each other the relaxation proceeds differently and exhibits
many fascinating properties. A coupling model has been pro-
posed to explain these propert{@21]. This model is based
. on the hypothesis that an interacting system relaxes initially
exponentially until at timet., but stretched exponentially
afterwards with continuity of the correlation function at the
time of crossovef5-7]. A recent neutron scattering mea-
' surement on a polymer has shown direct experimental evi-
10 ppes . 100 dence for this hypothes|8]. In our present work, the addi-
¢ tion of half of a stadium to the Fermi model to make it two
dimensional introduces additional nonlinearity that has simi-
FIG. 5. The Fermi curvésolid curve below approximated by lar effects on the relaxation towards equilibrium as many
the (dotted exponential function, and the Fermi-stadium curve, body interactions have on relaxation in densely packed sys-
with R=0.5, approximated by ddotted stretched-exponential tems. Since the numerical result obtained bears strong simi-
function. The dashed curve is an exponential indicating a failure tdarity to the basic features suggested by the coupling model
fit the Fermi-stadium curve. [5—7] and seen in neutron scattering experimgBy, the
Fermi-stadium map provides a useful first step in applying

relaxation of the Fermi-stadium map proceeds with anonlinear dynamical models to the study of irreversible pro-
stretched exponential time dependence at long times starti SS€s IOf rgal physical systems in physics, chemistry, and
at t~t,. The nonlinearity from the stadium is observed to Materais science.

slow down the relaxation of the original system. As ex-
pected, the fractional exponent decreases further from unity

with increasing nonlinearity or largeéR’s. This work was supported by the Office of Naval Re-
In the study of relaxation in real systems in physics,search.
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