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Dynamics of relaxing systems subjected to nonlinear interactions
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The combination of the Fermi map system and half a stadium is studied to determine the effect of additional
nonlinearity in the well known Fermi acceleration problem. The relaxation in the Fermi-stadium map with
differentR’s is compared to that in the Fermi map. The relaxation is found retarded for different values of
R. After a crossover time, the Fermi relaxation can be approximated by an exponential function, while the
Fermi-stadium relaxation can be approximated by a stretched-exponential function. The fractional exponentb
decreases further from unity with increasing nonlinearity. The result bears strong similarity to the basic
features suggested by the coupling model and seen experimentally in glass-forming materials by neutron
scattering.

PACS number~s!: 05.45.1b, 82.20.Rp, 31.70.Hq, 05.40.1j
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INTRODUCTION

Recent results@1# have shown that studies of nonline
dynamical systems can enhance the understanding of s
fundamental problems in physics, such as stability of
solar system, phase transitions, turbulence, and the erg
problems in statistical mechanics. One common characte
tic of such systems is the irreversibility of the dynamics d
to sensitive dependence of initial conditions. Simplifi
models for systems such as the Fermi acceleration@2# have
indicated that such systems relax to equilibrium through e
lutions as a Markov process. The evolution can be de
mined from a Fokker-Planck equation. It would be of inter
to study the relaxation of a more complex system, consis
of a number of such systems coupled together by nonlin
interactions. Such a study may be beneficial to the und
standing of relaxation processes in glass-forming viscous
uids, polymers, and ionic conductors, to name a few. Th
problems in condensed matter physics, physical chem
and materials science involve irreversible processes
densely packed interacting systems@3#. The interactions in
these systems come from nonlinear potentials such as th
Lennard-Jones in liquids and polymers and that of Coulo
in vitreous fast ionic conductors.

Recently we analyzed a system of interacting arrays
globally coupled oscillators@4#. The relaxation in the system
of interacting arrays was compared to that in an array
subject to interaction with others. The relaxation of the lat
was found to be exponential in time, while that of the form
was slowed down and its time dependence departed f
being exponential. There exists a crossover timetc before
which the relaxation of the interacting arrays remains ex
nential. However, beyondtc the relaxation is no longer ex
ponential but well approximated by a stretched exponen
exp@2(t/t)b#. The fractional exponentb was found to de-
crease further from unit with increasing interaction streng
The result bears strong similarity to the basic features s
gested by the coupling model of relaxation in glass-form
561063-651X/97/56~1!/17~4!/$10.00
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materials@5–7# and seen experimentally by neutron scatt
ing @8# for relaxation in densely packed interacting mo
ecules in glass-forming liquids. The possibility that the r
sults of the coupling model originate from nonline
Hamiltonian dynamics has existed ever since the first p
posal @5# that makes connection to quantum chaology@9#.
Later relations to nonlinear classical mechanics were m
@4,6,7#. Recently, Tsironis and Aubry@10# have studied re-
laxation properties of one-dimensional nonlinear lattices a
found also nonexponential lattice energy relaxation.

The interacting arrays model@4# provides a useful step in
applying nonlinear dynamical models to study the irreve
ible processes of real physical systems. However, a non
early coupled many body system would be very complica
to study. Introducing more nonlinearities to the simpler s
tem would serve the purpose of providing insights into wh
would happen in the complex problem. It is therefore a we
posed problem to study the effect of additional nonlinear
in well known problems such as the Fermi accelerati
What we can learn from the solution of the problem sho
shed some light on the nonlinearly coupled many body pr
lem.

FERMI MAP

A two-dimensional map can be used to model a realis
problem such as the cosmic ray acceleration mechanism
posed by Fermi@2#, in which charged particles are accele
ated by collisions with moving magnetic field structures.
the model, shown in Fig. 1, a ball bounces back and fo
between a fixed~dissipative! wall and an~elastic! wall oscil-
lating sinusoidally withx5a cosvt. The motion of the ball
can be described by the Fermi map@11–15#. The map can be
written as

un115u~12d!un1sinwnu,

wn115wn12pM /un11 ,
R17 © 1997 The American Physical Society
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whereun is the normalized ball velocity andwn is the phase
of the oscillating wall just before thenth collision of the ball
with the oscillating wall, andM5L/16a is the normalized
distance between the two walls. Tsang and Lieberm
@12,13#, considering the case whereM@1 andd!1, calcu-
lated that almost all initial distributions in velocitiesf 0(u)
evolve to the invariant onef (u);exp(22du2). Numerical
computations for various values ofM were reported to be in
agreement with such calculations. Assuming that the ph
averaged distribution evolves with time~iteration number!
n as a Markov process inu alone, the evolution can b
written in the form of a Fokker-Planck equation,

] f

]n
52

]

]u
B f1

1

2

]2

]u2
Df ,

where the friction coefficient is

B~u!5
1

2pE0
2p

Du dw52du,

and the diffusion coefficient is

D~u!5
1

2pE0
2p

~Du!2dw5
1

2
1d2u2.

Consider an ensemble of particles with an initial veloc
distribution almost being a delta functiond(u). As time
evolves, the narrow Gaussian distribution widens, approa
ing the invariant Gaussian distribution. The average ene
relaxes to the equilibrium energyexponentiallyin time.

FERMI-STADIUM MAP

To study one more dimension to the Fermi map, we a
two more elastic walls to the existing ones. As shown in F
2, the width between the new walls is 2, which is mu
smaller thanL. Although the motion of the ball is now two
dimensional, the Fermi system with the two walls added
just as simple as the one-dimensional Fermi map~since n
remains constant forever! unless we add more nonlinearity t
the system by, say, introducing some curvature at the
ends of the fixed dissipative wall. In particular, the righ
angled corners are replaced by quadrants of a circle w
radiusR @see Fig. 2~b!#, which is much smaller than 1. Th
composite system is actually the combination of the Fe
map system and half a stadium. Both the Fermi map and

FIG. 1. One-dimensional dissipative Fermi map.
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stadium problems@16–20# are classical problems known t
many in nonlinear dynamics, and we call this map for t
system the Fermi-stadium map. The dynamics of the ma
no different from the Fermi map except when the ball c
lides with the curved corners. The resulting orbits are
flected by twice the angle between the tangent there and
dissipative wall. Before considering the effect of the defle
tion at the curved corners, the map can be written as

u85~12d!un1sinwn ,

w85wn12pM /u8,

n85n,

y85y1nL/u ~mod4!
.

The modulo 4 restrictsy between22 and 2, in light of the
fact that one collision at the ceiling and another at the flo
are equivalent to a translation of 4 in the coordinatey. For an
extra collision, the value ofy would be larger than 1 or
smaller than21. To adjusty again so that it is between21
and 1, we do the following:

if y8.1 then y9522y,

if y8,21 then y95222y.

We then add the effect due to collisions at the curved c
ners. If

FIG. 2. ~a! Two-dimensional Fermi-stadium map;~b! a curved
corner of the added stadium portion.



th
o

-
g
th

um

y

g

nd

ve
-

re-
ifi-
by

e.

e
r it
oss-
ter-

ot

y
ght
or
of

is
l
a

a

en-

m

tim

,

RAPID COMMUNICATIONS

56 R19DYNAMICS OF RELAXING SYSTEMS SUBJECTED TO . . .
y9H .12R
,2~12R!J ,

then

S u9
n9D 5S cos2u 7sin2u

6sin2u cos2u D S u8
n8D ,

where u5sin21@(uy9u211R)/R#. The new values at the (n
11)st collision with the oscillating wall are then

un115uu9u,

nn115n9,

yn115uy9u,

wn115w8.

RELAXATION OF AVERAGE ENERGY

To study the relaxation of the average energy in
Fermi-stadium map, we observed the time evolution
10 000 initial conditions. The initial distributionf 0(u) is
such thatu0!1 andn0!u0. In order to smooth the high
frequency fluctuations in time, we use a running avera
over 50 time steps. We then compare the relaxation in
Fermi-stadium map with differentR’s to that in the Fermi
map.

NUMERICAL RESULTS

Figure 3 shows the numerical result of the Fermi-stadi
map with parametersd50.01, L andM5100, for various
values ofR ~0, 0.02, 0.1, and 0.5!. The normalized difference
F between the mean energy and the equilibrium energ
plotted against timet. The relaxation ofF is shown to be
slowed down whenR is nonzero and the degree of slowin

FIG. 3. Numerical result of the Fermi-stadium map with para
etersd50.01,L, andM5100, for various values ofR ~0, 0.02, 0.1,
and 0.5, from left to right!. The normalized differenceF between
the mean energy and the equilibrium energy is plotted against
t. The arrow indicates a rescaling of theR50.5 curve to show a
longer coincidence with the Fermi curve.
e
f

e
e

is

down increases withR. Note that forR50 ~the dashed line
at the bottom!, the map is reduced to the Fermi map a
there is no slowing down of the relaxation. Att5140, the
calculated solid curve, corresponding toR50.02, begins to
significantly deviate from the Fermi curve. The next cur
above corresponds toR50.1, and it begins to deviate signifi
cantly from the Fermi curve starting att5120. ForR50.5,
since the change from the Fermi map is substantial, we
scale the curve horizontally so that it coincides for a sign
cant portion with the Fermi curve. The rescaling is shown
the arrow in Fig. 3. Att585, the curve corresponding toR
50.5 begins to deviate significantly from the Fermi curv
Thus, there exists a crossover timetc ~the magnitude of
which depends onR!, before which the Fermi-stadium curv
decays exponentially like the Fermi curve, but thereafte
deviates from the Fermi curve. The existence of such a cr
over time from simple to coupled dynamics is the charac
istic of the coupling model@5–7# and was found also in the
relaxation of the interacting arrays@4#.

To study the nature of the relaxation, we pl
log10(2log10F) against log10t in Fig. 4. After a crossover
time tc ~which depends onR!, the curves become nearl
straight. The portion of the curves can be fitted to strai
lines of slopesb51.0, 0.86, 0.8, and 0.78, respectively, f
R50, 0.02, 0.1, and 0.5. Figure 5 shows that the portion
curves corresponding to larget can be approximated by
simple functions. In particular, the Fermi curve~solid curve
below! is shown approximated by the~dotted! exponential
function. The Fermi-stadium curve, on the other hand,
shown approximated by a~dotted! stretched-exponentia
function. The dashed curve is an exponential indicating
failure to fit the Fermi-stadium curve.

DISCUSSION AND CONCLUSION

The effect of additional nonlinearity, in the form of half
stadium, to the Fermi map, has been studied. ForR50, the
problem reduces to the Fermi map, which relaxes expon
tially @1,11,12#, i.e., for larget, F;exp(2t/t). For nonzero
R’s, it is found thatF;exp@2(t/t8)b# for t.tc . Thus the

-

e

FIG. 4. log10(2log10F) against log10t. The curves become
nearly straight after a crossover timetc , which depends onR, and
can be fitted to straight lines of slopesb51.0, 0.86, 0.8, and 0.78
respectively, forR50, 0.02, 0.1, and 0.5~from left to right!.
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relaxation of the Fermi-stadium map proceeds with
stretched exponential time dependence at long times sta
at t'tc . The nonlinearity from the stadium is observed
slow down the relaxation of the original system. As e
pected, the fractional exponent decreases further from u
with increasing nonlinearity or largerR’s.

In the study of relaxation in real systems in physic

FIG. 5. The Fermi curve~solid curve below! approximated by
the ~dotted! exponential function, and the Fermi-stadium curv
with R50.5, approximated by a~dotted! stretched-exponentia
function. The dashed curve is an exponential indicating a failur
fit the Fermi-stadium curve.
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chemistry, and materials science, it is found that a sys
without interactions usually relaxes exponentially. Howev
when such systems are densely packed and interacting
each other the relaxation proceeds differently and exhi
many fascinating properties. A coupling model has been p
posed to explain these properties@7,21#. This model is based
on the hypothesis that an interacting system relaxes initi
exponentially until at timetc , but stretched exponentially
afterwards with continuity of the correlation function at th
time of crossover@5–7#. A recent neutron scattering mea
surement on a polymer has shown direct experimental
dence for this hypothesis@8#. In our present work, the addi
tion of half of a stadium to the Fermi model to make it tw
dimensional introduces additional nonlinearity that has si
lar effects on the relaxation towards equilibrium as ma
body interactions have on relaxation in densely packed s
tems. Since the numerical result obtained bears strong s
larity to the basic features suggested by the coupling mo
@5–7# and seen in neutron scattering experiment@8#, the
Fermi-stadium map provides a useful first step in apply
nonlinear dynamical models to the study of irreversible p
cesses of real physical systems in physics, chemistry,
materials science.
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